Agenda

Data Mining and MS SQL Server - Introduction
Business Intelligence and Data Mining - Usage Scenarios for Data Mining - Data Mining Techniques in Microsoft SQL Server and MS Excel - Server and Client Components: MS SQL Server Analysis Services and Data Mining Add-Ins for MS Excel and MS Visio - Data Mining Life Cycle and Tasks - Data Mining Techniques in MS SQL Server - Project Cycle (Data Collection, Processing and Cleaning of Data, Modeling, Model Evaluation, Reporting, Forecasting, Integration into Applications, Model Management and Maintenance)
Classification using Microsoft Decision Trees
Introduction to the Algorithm - Parameters - Building a Model and Using the Model - DMX Queries - Classification Model, Regression Model, Relationship Model
Classification using Microsoft Naive Bayes
Introduction to the Algorithm - Parameters - Building a Model and Using the Model - DMX Queries - Dependency Network, Attribute Profiles, Attribute Characteristics, Attribute Discrimination
Microsoft Time Series
Introduction to the Algorithm - Parameters - Building a Model and Using the Model: Auto Regression, Multiple Time Series, Seasonality, Historic Predictions, Caching Predictions - DMX Queries
Microsoft Clustering
Introduction to the Algorithm - Parameters - Building a Model and Using the Model: Clustering Types, Scalable Clustering, Predictions and Cluster Assignment - DMX Queries: Cluster, Probability, Histograms, CaseLikelihood
Microsoft Sequence Clustering
Introduction to the Algorithm - Parameters - Building a Model and Using the Model: Markov Chains, Transition Matrix, Clustering and Markov Chains, Decomposition - DMX Queries
Microsoft Association Rules
Introduction to the Algorithm - Parameters - Building a Model and Using the Model: Itemset, Support, Probability and Confidence, Interestingness and Importance - DMX Queries
Microsoft Neural Network
Introduction to the Algorithm - Parameters - Building a Model and Using the Model: Combination and Activation, Normalization and Mapping, Topology of a Neural Network , Model Training - DMX Queries
Table Analysis Tools for Excel
Data Cleaning and Sampling - Prediction Calculator - Shopping Basket Analysis
Data Mining Client for Excel
Adding and Processing Structures and Models - Testing Models - Data Mining Queries - Using Data Mining-Models in Integration Services – Using Data Mining Results in Reporting Services
Trainer

Marco Skulschus (born in Germany in 1978) studied economics in Wuppertal (Germany) and Paris (France) and wrote his master´s thesis about semantic data modeling. He started working as a lecturer and consultant in 2002.
Publications
- MS SQL Server - XML und SOAP-Webservices ISBN 978-3-939701-03-3
- MS SQL Server - T-SQL Programmierung und Abfragen ISBN 978-3-939701-02-6
- SQL und relationale Datenbanken ISBN 978-3-939701-52-1
- Grundlagen empirische Sozialforschung - Befragung und Fragebogen im Unternehmen ISBN 978-3-939701-23-1
- System und Systematik von Fragebögen ISBN 978-3-939701-26-2
- MS SQL Server - XML und SOAP-Webservices ISBN 978-3-939701-03-3
- MS SQL Server - T-SQL Programmierung und Abfragen ISBN 978-3-939701-02-6
- SQL und relationale Datenbanken ISBN 978-3-939701-52-1
- Grundlagen empirische Sozialforschung - Befragung und Fragebogen im Unternehmen ISBN 978-3-939701-23-1
- System und Systematik von Fragebögen ISBN 978-3-939701-26-2
Projects
He works as an IT-consultant and project manager. He developed various Business Intelligence systems for industry clients and the public sector. For several years now, he is responsible for a BI-team in India which is mainly involved in BI and OLAP projects, reporting systems as well as statistical analysis and Data Mining.
Research
He led several research projects and was leading scientist and project manager of a publicly funded project about interactive questionnaires and online surveys.
